View all text of Subpart D [§ 796.3100 - § 796.3500]
§ 796.3100 - Aerobic aquatic biodegradation.
(a) Introduction—(1) Purpose. (i) This Guideline is designed to develop data on the rate and extent of aerobic biodegradation that might occur when chemical substances are released to aquatic environments. A high biodegradability result in this test provides evidence that the test substance will be biodegradable in natural aerobic freshwater environments.
(ii) On the contrary, a low biodegradation result may have other causes than poor biodegradability of the test substance. Inhibition of the microbial inoculum by the test substance at the test concentration may be observed. In such cases, further work is needed to assess the aerobic aquatic biodegradability and to determine the concentrations at which toxic effects are evident. An estimate of the expected environmental concentration will help to put toxic effects into perspective.
(2) Definitions. (i) “Adaptation” is the process by which a substance induces the synthesis of any degradative enzymes necessary to catalyze the transformation of that substance.
(ii) “Ultimate Biodegradability” is the breakdown of an organic compound to CO
(iii) “Ready Biodegradability” is an expression used to describe those substances which, in certain biodegradation test procedures, produce positive results that are unequivocal and which lead to the reasonable assumption that the substance will undergo rapid and ultimate biodegradation in aerobic aquatic environments.
(3) Principle of the test method. This Guideline method is based on the method described by William Gledhill (1975) under paragraph (d)(1) of this section. The method consists of a 2-week inoculum buildup period during which soil and sewage microorganisms are provided the opportunity to adapt to the test compound. This inoculum is added to a specially equipped Erlenmeyer flask containing a defined medium with test substance. A reservoir holding barium hydroxide solution is suspended in the test flask. After inoculation, the test flasks are sparged with CO
(4) Prerequisites. The total organic carbon (TOC) content of the test substance shall be calculated or, if this is not possible, analyzed, to enable the percent of theoretical yield of carbon dioxide and percent of DOC loss to be calculated.
(5) Guideline information. (i) Information on the relative proportions of the major components of the test substance will be useful in interpreting the results obtained, particularly in those cases where the result lies close to a “pass level.”
(ii) Information on the toxicity of the chemical may be useful in the interpretation of low results and in the selection of appropriate test concentrations.
(6) Reference substances. Where investigating a chemical substance, reference compounds may be useful and an inventory of suitable reference compounds needs to be identified. In order to check the activity of the inoculum the use of a reference compound is desirable. Aniline, sodium citrate, dextrose, phthalic acid and trimellitic acid will exhibit ultimate biodegradation under the conditions of this Test Guideline method. These reference substances must yield 60 percent of theoretical maximum CO
(7) Reproducibility. The reproducibility of the method has not yet been determined; however it is believed to be appropriate for a screening test which has solely an acceptance but no rejective function.
(8) Sensitivity. The sensitivity of the method is determined by the ability to measure the endogenous CO
(9) Possibility of standardization. This possibility exists. The major difficulty is to standardize the inoculum in such a way that interlaboratory reproducibility is ensured.
(10) Possibility of automation. None at present, although parts of the analyses may be automated.
(b) Test procedures—(1) Preparations—(i) Apparatus. The shake flask apparatus under the following Figure 1 contains 10 mL of 0.2N Ba(OH)
(ii) Reagents and stock solutions. (A) Stock solutions, I, II, and III under the following Table 1.
(B) Yeast extract.
(C) Vitamin-free casamino acids.
(D) 70 percent O
(E) 0.2N Ba(OH)
(F) 0.1 N HCl.
(G) 20 percent H
(H) Phenolphthalein.
(I) Dilution water—distilled, deionized water (DIW).
(iii) Soil inoculum. A fresh sample of an organically rich soil is used as the inoculum in the ultimate biodegradation test. Soil is collected, prepared, and stored according to the recommendations of Pramer and Bartha (1972) under paragraph (d)(2) of this section. The soil surface is cleared of litter and a soil sample is obtained 10 to 20 cm below the surface. The sample is screened through a sieve with 2 to 5 mm openings and stored in a polyethylene bag at 2 to 4 °C for not more than 30 days prior to use. The soil is never allowed to air-dry, and shall not be frozen during storage.
Table 1—Medium Employed for Assay of CO
Solution 1 | Compound | Stock Solution Conc. (g/L) | I | NH | 35 | KNO | 15 | K | 750 | NaH | 25 | II 2 | KCl | 10 | MgSO | 20 | FeSO | 1 | III | CaCl | 5 | ZnCl | 0.05 | MnCl | 0.5 | CuCl | 0.05 | CoCl | 0.001 | H | 0.001 | MoO | 0.0004 |
---|
1 = Each liter of test medium contains 1 mL of each solution.
2 = Final pH is adjusted to 3.0 with 0.10 N HCl.
(iv) Acclimation Medium. Acclimation medium is prepared by adding, for each liter of distilled, deionized water (DIW): 1 mL each of solutions I, II, and III in Table 1 in paragraph (b)(1)(iii) of this section, 1.0 gm of soil inoculum (prepared according to paragraph (b)(1)(iii) of this section), 2.0 mL of aerated mixed liquor (obtained from an activated sludge treatment plant not more than 2 days prior to commencing the acclimation phase, and stored in the interim at 4 °C) and 50 mL raw domestic influent sewage. This medium is mixed for 15 minutes and filtered through a glass wool plug in a glass funnel. The filtrate is permitted to stand for 1 hour, refiltered through glass wool, and supplemented with 25 mg/L each of Difco vitamin-free casamino acids and yeast extract. Appropriate volumes are added to 2-liter Erlenmeyer flasks. Test compounds are added incrementally during the acclimation period at concentrations equivalent to 4, 8, and 8 mg/L carbon on days 0, 7, and 11, respectively. On day 14, the medium is refiltered through glass wool prior to use in the test. For evaluating the biodegradability of a series of functionally or structurally related chemicals, media from all inoculum flasks may be combined before final filtration.
(2) Procedures. (i) Inoculum (100 mL of acclimation medium) is added to 900 mL DIW containing 1 mL each of solutions I, II, and III in Table 1 under paragraph (b)(1)(iii) of this section in a 2-liter Erlenmeyer flask. Test compound equivalent to 10 mg/liter carbon is added to each of the replicate flasks containing the test medium. Ten mL of 0.2 N Ba (OH)
(ii) For each set of experiments, each test substance shall be tested in triplicate.
(iii) For each set of experiments, one or two reference compounds are included to assess the microbial activity of the test medium. Duplicate reference flasks are prepared by adding reference compound equivalent to 10 mg/liter carbon to each of two flasks containing the test medium. Reference compounds which are positive for ultimate biodegradability include: sodium citrate, dextrose, phthalic acid, trimellitic acid, and aniline.
(iv) For each test set, triplicate controls receiving inoculated medium and no test compound, plus all test and reference flasks, are analyzed for CO
(v) A test system containing a growth inhibitor should be established as a control for each substance tested for biodegradation by this method. That inhibited system must contain the same amount of water, mineral nutrients, inoculum, and test substance used in the uninhibited test systems, plus 50 mg/L mercuric chloride (HgCl
(vi) Flasks shall be incubated in the dark to minimize both photochemical reactions and algal growth. Appropriate sterile controls or controls containing a metabolic inhibitor, such as 50 mg/1 HgCl
(3) Analytical measurements. The quantity of CO
(c) Data and reporting—(1) Treatment of results. (i) Test compound (10 mg carbon) is theoretically converted to 0.833 mmol CO
(ii) The cumulative percent CO
(iii) The percent DOC disappearance from the test compound is calculated from the following equation:
(iv) The difference between the amount of 0.1 N HCl used for the Ba(OH)
(v) CO
(vi) Inhibition by the test compound is indicated by lower CO
(vii) The use of 14C-labeled chemicals is not required. If appropriately labeled test substance is readily available and if the investigator chooses to use this procedure with labeled test substance, this is an acceptable alternative. If this option is chosen, the investigator may use lower test substance concentrations if those concentrations are more representative of environmental levels.
(2) Test report. (i) For each test and reference compound, the following data shall be reported.
(ii) Information on the inoculum, including source, collection date, handling, storage and adaptation possibilities (i.e., that the inoculum might have been exposed to the test substance either before or after collection and prior to use in the test).
(iii) Results from each test, reference, inhibited (with HgCl
(iv) Average cumulative percent theoretical CO
(v) Dissolved organic carbon due to test compound at each sampling time (DTF-DCF).
(vi) Average percent DOC removal at each sampling time.
(vii) Twenty-eight day standard deviation for percent CO
(d) References. For additional background information on this test guideline the following references should be consulted:
(1) Gledhill, W.E. “Screening Test for Assessment of Ultimate Biodegradability: Linear Alkyl Benzene Sulfonate,” Applied Microbiology, 30:922-929 (1975).
(2) Pramer, D., Bartha, R. “Preparation and Processing of Soil Samples for Biodegradation Testing,” Environmental Letters, 2:217-224 (1972).