Appendix A - Appendix A to Subpart L of Part 98—Mass Balance Method for Fluorinated Gas Production
1. Mass Balance Method for § 98.123(b). [Note: Numbering convention here matches original rule text, 75 FR 74774, December 1, 2010.]
(b) Mass balance method. Before using the mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that the process and the equipment and methods used to measure it meet either the error limits described in this paragraph and calculated under paragraph (b)(1) of this section or the requirements specified in paragraph § 98.124(b)(8). If you choose to calculate the error limits, you must estimate the absolute and relative errors associated with using the mass balance approach on that process using Equations L-1 through L-4 of this section in conjunction with Equations L-5 through L-10 of this section. You may use the mass-balance approach to estimate emissions from the process if this calculation results in an absolute error of less than or equal to 3,000 metric tons CO
(1) Error calculation. To perform the calculation, you must first calculate the absolute and relative errors associated with the quantities calculated using either Equations L-7 through L-10 of this section or Equation L-17 of this section. Alternatively, you may estimate these errors based on the variability of previous process measurements (e.g., the variability of measurements of stream concentrations), provided these measurements are representative of the current process and current measurement devices and techniques. Once errors have been calculated for the quantities in these equations, those errors must be used to calculate the errors in Equations L-6 and L-5 of this section. You may ignore the errors associated with Equations L-11, L-12, and L-13 of this section.
(i) Where the measured quantity is a mass, the error in the mass must be equated to the accuracy or precision (whichever is larger) of the flowmeter, scale, or combination of volumetric and density measurements at the flow rate or mass measured.
(ii) Where the measured quantity is a concentration of a stream component, the error of the concentration must be equated to the accuracy or precision (whichever is larger) with which you estimate the mean concentration of that stream component, accounting for the variability of the process, the frequency of the measurements, and the accuracy or precision (whichever is larger) of the analytical technique used to measure the concentration at the concentration measured. If the variability of process measurements is used to estimate the error, this variability shall be assumed to account both for the variability of the process and the precision of the analytical technique. Use standard statistical techniques such as the student's t distribution to estimate the error of the mean of the concentration measurements as a function of process variability and frequency of measurement.
(iii) Equation L-1 of this section provides the general formula for calculating the absolute errors of sums and differences where the sum, S, is the summation of variables measured, a, b, c, etc. (e.g., S = a + b + c):
Where:(iv) Equation L-2 of this section provides the general formula for calculating the relative errors of sums and differences:
Where:(v) Equation L-3 of this section provides the general formula for calculating the absolute errors of products (e.g., flow rates of GHGs calculated as the product of the flow rate of the stream and the concentration of the GHG in the stream), where the product, P, is the result of multiplying the variables measured, a, b, c, etc. (e.g., P = a*b*c):
Where:(vi) Equation L-4 of this section provides the general formula for calculating the relative errors of products:
Where:(vii) Calculate the absolute error of the emissions estimate in terms of CO
(viii) To estimate the annual CO
(2) The total mass of each fluorinated GHG emitted annually from each fluorinated gas production and each fluorinated GHG transformation process must be estimated by using Equation L-5 of this section.
Where:(3) The total mass of fluorine emitted from process i over the period p must be estimated at least monthly by calculating the difference between the total mass of fluorine in the reactant(s) (or inputs, for processes that do not involve a chemical reaction) and the total mass of fluorine in the product (or outputs, for processes that do not involve a chemical reaction), accounting for the total mass of fluorine in any destroyed or recaptured streams that contain reactants, products, or by-products (or inputs or outputs). This calculation must be performed using Equation L-6 of this section. An element other than fluorine may be used in the mass-balance equation, provided the element occurs in all of the fluorinated GHGs fed into or generated by the process. In this case, the mass fractions of the element in the reactants, products, and by-products must be calculated as appropriate for that element.
Where:(4) The mass of total fluorine in destroyed or recaptured streams containing fluorine-containing reactants, products, and by-products must be estimated at least monthly using Equation L-7 of this section unless you use the alternative approach provided in paragraph (b)(15) of this section.
Where:(5) The mass of each fluorinated GHG removed from process i in stream j and destroyed over the period p (i.e., P
(6) The mass of each fluorine-containing compound that is not a fluorinated GHG and that is removed from process i in stream j and destroyed over the period p (i.e., P
(7) The mass of fluorine-containing by-product k removed from process i in stream l and recaptured over the period p must be estimated using Equation L-10 of this section:
Where:(8) To estimate the terms FER
(i) If the calculations under paragraph (b)(1)(viii) of this section, or any subsequent measurements and calculations under this subpart, indicate that the process emits 25,000 metric tons CO
(ii) For other vents, including vents from processes that emit less than 25,000 metric tons CO
(iii) For fluorine emissions that are not accounted for by vent estimates, you must characterize emissions as specified in § 98.124(b)(6).
(9) The total mass of fluorine-containing reactant d emitted must be estimated at least monthly based on the total fluorine emitted and the fraction that consists of fluorine-containing reactants using Equation L-11 of this section. If the fluorine-containing reactant d is a non-GHG, you may assume that FER
(10) The total mass of fluorine-containing product emitted must be estimated at least monthly based on the total fluorine emitted and the fraction that consists of fluorine-containing products using Equation L-12 of this section. If the fluorine-containing product is a non-GHG, you may assume that FEP is zero.
Where:(11) The total mass of fluorine-containing by-product k emitted must be estimated at least monthly based on the total fluorine emitted and the fraction that consists of fluorine-containing by-products using Equation L-13 of this section. If fluorine-containing by-product k is a non-GHG, you may assume that FEB
(12) The mass fraction of fluorine in reactant d must be estimated using Equation L-14 of this section:
Where:(13) The mass fraction of fluorine in the product must be estimated using Equation L-15 of this section:
Where:(14) The mass fraction of fluorine in by-product k must be estimated using Equation L-16 of this section:
Where:(15) Alternative for determining the mass of fluorine destroyed or recaptured. As an alternative to using Equation L-7 of this section as provided in paragraph (b)(4) of this section, you may estimate at least monthly the total mass of fluorine in destroyed or recaptured streams containing fluorine-containing compounds (including all fluorine-containing reactants, products, and byproducts) using Equation L-17 of this section.
Where:(16) Weighted average destruction efficiency. For purposes of Equation L-17 of this section, calculate the weighted average destruction efficiency applicable to a destroyed stream using Equation L-18 of this section.
Where:2. Mass Balance Method for § 98.124(b). [Note: Numbering convention here matches original rule text, 75 FR 74774, December 1, 2010.]
(b) Mass balance monitoring. If you determine fluorinated GHG emissions from any process using the mass balance method under § 98.123(b), you must estimate the total mass of each fluorinated GHG emitted from that process at least monthly. Only streams that contain greater than trace concentrations of fluorine-containing reactants, products, or by-products must be monitored under this paragraph. If you use an element other than fluorine in the mass-balance equation pursuant to § 98.123(b)(3), substitute that element for fluorine in the monitoring requirements of this paragraph.
(1) Mass measurements. Measure the following masses on a monthly or more frequent basis using flowmeters, weigh scales, or a combination of volumetric and density measurements with accuracies and precisions that allow the facility to meet the error criteria in § 98.123(b)(1):
(i) Total mass of each fluorine-containing product produced. Account for any used fluorine-containing product added into the production process upstream of the output measurement as directed at §§ 98.413(b) and 98.414(b). For each product, the mass produced used for the mass-balance calculation must be the same as the mass produced that is reported under subpart OO of this part, where applicable.
(ii) Total mass of each fluorine-containing reactant fed into the process.
(iii) The mass removed from the process in each stream fed into the destruction device.
(iv) The mass removed from the process in each recaptured stream.
(2) Concentration measurements for use with § 98.123(b)(4). If you use § 98.123(b)(4) to estimate the mass of fluorine in destroyed or recaptured streams, measure the following concentrations at least once each calendar month during which the process is operating, on a schedule to ensure that the measurements are representative of the full range of process conditions (e.g., catalyst age). Measure more frequently if this is necessary to meet the error criteria in § 98.123(b)(1). Use equipment and methods (e.g., gas chromatography) that comply with paragraph (e) of this section and that have an accuracy and precision that allow the facility to meet the error criteria in § 98.123(b)(1). Only fluorine-containing reactants, products, and by-products that occur in a stream in greater than trace concentrations must be monitored under this paragraph.
(i) The concentration (mass fraction) of the fluorine-containing product in each stream that is fed into the destruction device.
(ii) The concentration (mass fraction) of each fluorine-containing by-product in each stream that is fed into the destruction device.
(iii) The concentration (mass fraction) of each fluorine-containing reactant in each stream that is fed into the destruction device.
(iv) The concentration (mass fraction) of each fluorine-containing by-product in each stream that is recaptured (c
(3) Concentration measurements for use with § 98.123(b)(15). If you use § 98.123(b)(15) to estimate the mass of fluorine in destroyed or recaptured streams, measure the concentrations listed in paragraphs (b)(3)(i) and (ii) of this section at least once each calendar month during which the process is operating, on a schedule to ensure that the measurements are representative of the full range of process conditions (e.g., catalyst age). Measure more frequently if this is necessary to meet the error criteria in § 98.123(b)(1). Use equipment and methods (e.g., gas chromatography) that comply with paragraph (e) of this section and that have an accuracy and precision that allow the facility to meet the error criteria in § 98.123(b)(1). Only fluorine-containing reactants, products, and by-products that occur in a stream in greater than trace concentrations must be monitored under this paragraph.
(i) The concentration (mass fraction) of total fluorine in each stream that is fed into the destruction device.
(ii) The concentration (mass fraction) of total fluorine in each stream that is recaptured.
(4) Emissions characterization: process vents emitting 25,000 metric tons CO
(i) Uncontrolled emissions. If emissions from the process vent are not routed through a destruction device, sample and analyze emissions at the process vent or stack or sample and analyze emitted streams before the process vent. If the process has more than one operating scenario, you must either perform the emission characterization for each operating scenario or perform the emission characterization for the operating scenario that is expected to have the largest emissions and adjust the emission characterization for other scenarios using engineering calculations and assessments as specified in § 98.123(c)(4). To perform the characterization, take three samples under conditions that are representative for the operating scenario. Measure the concentration of each fluorine-containing compound in each sample. Use equipment and methods that comply with paragraph (e) of this section. Calculate the average concentration of each fluorine-containing compound across all three samples.
(ii) Controlled emissions using § 98.123(b)(15). If you use § 98.123(b)(15) to estimate the total mass of fluorine in destroyed or recaptured streams, and if the emissions from the process vent are routed through a destruction device, characterize emissions as specified in paragraph (b)(4)(i) of this section before the destruction device. Apply the destruction efficiency demonstrated for each fluorinated GHG in the destroyed stream to that fluorinated GHG. Exclude from the characterization fluorine-containing compounds that are not fluorinated GHGs.
(iii) Controlled emissions using § 98.123(b)(4). If you use § 98.123(b)(4) to estimate the mass of fluorine in destroyed or recaptured streams, and if the emissions from the process vent are routed through a destruction device, characterize the process vent's emissions monthly (or more frequently) using the monthly (or more frequent) measurements under paragraphs (b)(1)(iii) and (b)(2)(i) through (iii) of this section. Apply the destruction efficiency demonstrated for each fluorinated GHG in the destroyed stream to that fluorinated GHG. Exclude from the characterization fluorine-containing compounds that are not fluorinated GHGs.
(iv) Emissions characterization frequency. You must repeat emission characterizations performed under paragraph (b)(4)(i) and (ii) of this section under paragraph (b)(4)(iv)(A) or (B) of this section, whichever occurs first:
(A) 10-year revision. Repeat the emission characterization every 10 years. In the calculations under § 98.123, apply the revised emission characterization to the process activity that occurs after the revision.
(B) Operating scenario change that affects the emission characterization. For planned operating scenario changes, you must estimate and compare the emission calculation factors for the changed operating scenario and for the original operating scenario whose process vent specific emission factor was measured. Use the engineering calculations and assessments specified in § 98.123(c)(4). If the share of total fluorine-containing compound emissions represented by any fluorinated GHG changes under the changed operating scenario by 15 percent or more of the total, relative to the previous operating scenario (this includes the cumulative change in the emission calculation factor since the last emissions test), you must repeat the emission characterization. Perform the emission characterization before February 28 of the year that immediately follows the change. In the calculations under § 98.123, apply the revised emission characterization to the process activity that occurs after the operating scenario change.
(v) Subsequent measurements. If a process vent with fluorinated GHG emissions less than 25,000 metric tons CO
(5) Emissions characterization: Process vents emitting less than 25,000 metric tons CO
(i) Uncontrolled emissions. If emissions from the process vent are not routed through a destruction device, emission measurements must consist of sampling and analysis of emissions at the process vent or stack, sampling and analysis of emitted streams before the process vent, previous test results, provided the tests are representative of current operating conditions of the process, or bench-scale or pilot-scale test data representative of the process operating conditions.
(ii) Controlled emissions using § 98.123(b)(15). If you use § 98.123(b)(15) to estimate the total mass of fluorine in destroyed or recaptured streams, and if the emissions from the process vent are routed through a destruction device, characterize emissions as specified in paragraph (b)(5)(i) of this section before the destruction device. Apply the destruction efficiency demonstrated for each fluorinated GHG in the destroyed stream to that fluorinated GHG. Exclude from the characterization fluorine-containing compounds that are not fluorinated GHGs.
(iii) Controlled emissions using § 98.123(b)(4). If you use § 98.123(b)(4) to estimate the mass of fluorine in destroyed or recaptured streams, and if the emissions from the process vent are routed through a destruction device, characterize the process vent's emissions monthly (or more frequently) using the monthly (or more frequent) measurements under paragraphs (b)(1)(iii) and (b)(2)(i) through (iii) of this section. Apply the destruction efficiency demonstrated for each fluorinated GHG in the destroyed stream to that fluorinated GHG. Exclude from the characterization fluorine-containing compounds that are not fluorinated GHGs.
(6) Emissions characterization: Emissions not accounted for by process vent estimates. Calculate the weighted average emission characterization across the process vents before any destruction devices. Apply the weighted average emission characterization for all the process vents to any fluorine emissions that are not accounted for by process vent estimates.
(7) Impurities in reactants. If any fluorine-containing impurity is fed into a process along with a reactant (or other input) in greater than trace concentrations, this impurity shall be monitored under this section and included in the calculations under § 98.123 in the same manner as reactants fed into the process, fed into the destruction device, recaptured, or emitted, except the concentration of the impurity in the mass fed into the process shall be measured, and the mass of the impurity fed into the process shall be calculated as the product of the concentration of the impurity and the mass fed into the process. The mass of the reactant fed into the process may be reduced to account for the mass of the impurity.
(8) Alternative to error calculation. As an alternative to calculating the relative and absolute errors associated with the estimate of emissions under § 98.123(b), you may comply with the precision, accuracy, measurement and calculation frequency, and fluorinated GHG throughput requirements of paragraph (b)(8)(i) through (iv) of this section.
(i) Mass measurements. Measure the masses specified in paragraph (b)(1) of this section using flowmeters, weigh scales, or a combination of volumetric and density measurements with accuracies and precisions of ±0.2 percent of full scale or better.
(ii) Concentration measurements. Measure the concentrations specified in paragraph (b)(2) or (3) of this section, as applicable, using analytical methods with accuracies and precisions of ±10 percent or better.
(iii) Measurement and calculation frequency. Perform the mass measurements specified in paragraph (b)(1) of this section and the concentration measurements specified in paragraph (b)(2) or (3) of this section, as applicable, at least weekly, and calculate emissions at least weekly.
(iv) Fluorinated-GHG throughput limit. You may use the alternative to the error calculation specified in paragraph (b)(8) of this section only if the total annual CO