Appendix D - Appendix D to Subpart C of Part 431—Uniform Test Method for the Measurement of Energy Consumption of Blast Chillers or Blast Freezers

Note:

On or after September 20, 2024, any representations, including for certification of compliance, made with respect to the energy use or efficiency of blast chillers or blast freezers must be made in accordance with the results of testing pursuant to this appendix.

0. Incorporation by Reference

DOE incorporated by reference in § 431.63 the entire standard for AHRI 1200-2023, ASHRAE 72-2022, and ASHRAE 72-2022 Errata (the latter two collectively referenced as ASHRAE 72-2022 with Errata). However, only enumerated provisions of those documents are applicable to this appendix as follows:

0.1 AHRI 1200-2023

(a) Appendix C, “Commercial Refrigerated Display Merchandiser and Storage Cabinet Refrigerated Volume Calculation—Normative,” as referenced in section 1.1.1. of this appendix.

(b) Reserved.

0.2 ASHRAE 72-2022 with Errata

(a) Section 4, “Instruments,” as referenced in section 1.2 of this appendix.

(b) Section 5, “Preparation of Unit Under Test” (except section 5.4, “Loading of Test Simulators and Filler Material”), as referenced in section 1.2 of this appendix.

(c) Section 6.1, “Ambient Temperature and Humidity,” as referenced in sections 1.2 and 1.4 of this appendix.

(d) Figure 6, “Location of Ambient Temperature Indicators,” as referenced in sections 1.2 and 1.4 of this appendix.

(e) Normative Appendix A, “Measurement Locations, Tolerances, Accuracies, and Other Characteristics,” (only the measured quantities specified in section 1.2.1 of this appendix) as referenced in sections 1.2 and 1.4 of this appendix.

1. Test Procedures

1.1. Scope. This section provides the test procedures for measuring the energy consumption in kilowatt-hours per pound (kWh/lb) for self-contained commercial blast chillers and blast freezers that have a refrigerated volume of up to 500 ft 3.

1.1.1. Determination of Refrigerated Volume. Determine the refrigerated volume of a self-contained commercial blast chiller or blast freezer using the method set forth in AHRI 1200-2023, appendix C, “Commercial Refrigerated Display Merchandiser and Storage Cabinet Refrigerated Volume Calculation—Normative.”

1.2. Determination of Energy Consumption. Determine the energy consumption of each covered blast chiller or blast freezer by conducting the test procedure set forth in ASHRAE 72-2022 with Errata section 4, “Instruments,” section 5, “Preparation of Unit Under Test” (except section 5.4, “Loading of Test Simulators and Filler Material”), section 6.1, “Ambient Temperature and Humidity,” Figure 6, “Location of Ambient Temperature Indicators,” and normative appendix A, “Measurement Locations, Tolerances, Accuracies, and Other Characteristics” (only the measured quantities specified in section 1.2.1 of this appendix), as well as the requirements of this appendix.

1.2.1. Measured Quantities in Normative Appendix A of ASHRAE 72-2022 with Errata. The following measured quantities shall be in accordance with the specifications of normative appendix A of ASHRAE 72-2022 with Errata: dry bulb temperature (except for deviations specified in sections 1.3 and 1.4 of this appendix), electrical supply frequency, electrical supply potential, energy consumed (except for deviations specified in section 1.3 of this appendix), extent of non-perforated surface beyond edges of unit under test, front clearance, rear or side clearance, and time measurements.

1.2.2. Additional Specifications for ASHRAE 72-2022 with Errata. The term “refrigerator” used in ASHRAE 72-2022 with Errata shall instead refer to “blast chiller” or “blast freezer,” as applicable. In section 5.3 of ASHRAE 72-2022 with Errata, the phrase “all necessary components and accessories shall be installed prior to loading the storage and display areas with test simulators and filler material” shall be replaced with “all necessary components and accessories shall be installed prior to precooling the unit under test.” Section 5.3.5 shall also require that, prior to precooling the unit under test, the condensate pan shall be dry.

1.3. Data Recording Measurement Intervals. Measurements shall be continuously recorded during the test in intervals no greater than 10 seconds.

1.4. Test Conditions. The required test conditions shall have dry bulb temperature values according to Table D.1 when measured at point A in figure 6 of ASHRAE 72-2022 with Errata and according to section 6.1 of ASHRAE 72-2022 with Errata.

Table D.1—Test Condition Values and Tolerances

Test condition Value Tolerance Dry Bulb86.0 °FAverage over test period: ±1.8 °F.
Individual measurements: ±3.6 °F.

1.5. Product Pan. The product pan shall be a 12 in. by 20 in. by 2.5 in., 22 gauge or heavier, and 300 series stainless steel pan. If the blast chiller or blast freezer is not capable of holding the 12 in. by 20 in. by 2.5 in. product pan dimensions, the manufacturer's recommended pan size shall be used, conforming as closely as possible to the 12 in. by 20 in. by 2.5 in. pan dimensions.

1.6. Product Temperature Measurement. The product temperature shall be measured in the geometric center of the measured product pans using an unweighted thermocouple placed 5/8 of an in. above the bottom of the measured product pan. The thermocouple leads shall be secured to the bottom of the measured product pan while also allowing for the transfer of the measured product pan from the heating source into the blast chiller's or blast freezer's cabinet.

1.7. Product Preparation. The product shall be made for each product pan and shall be loaded to 2 in. of product thickness (i.e., depth) within the product pan unless an additional product pan with a product thickness of less than 2 in. is needed to meet the product capacity determined in section 2.1 of this appendix. A 20-percent-by-volume propylene glycol (1,2-Propanediol) mixture in water shall be prepared. In each product pan, pour the propylene glycol mixture over #20 mesh southern yellow pine sawdust to create a 22 percent to 78 percent by mass slurry. An example of an acceptable sawdust specification is the American Wood Fibers brand, #20 Mesh Pine Sawdust. Mix until the sawdust becomes completely saturated and leave uncovered in the product pan. Verify that the product pan thermocouple is fully submerged in the product mixture and reposition the product pan thermocouple to the requirements of section 1.6. of this appendix if the product pan thermocouple is incorrectly positioned after mixing. Each product pan shall be weighed before and after the food product simulator is added and prior to heating the product. The weight of the product shall not include the weight of the pans, thermocouples, or wires. A cumulative total of the product weight shall be calculated and the product pans shall continue to be loaded with the product mixture until the cumulative total reaches, but not exceeds, the product capacity determined in section 2.1 of this appendix with a tolerance of ±5 percent or ±2 pounds, whichever is less. The cumulative total weight of product, the weight of product in each individual pan, and the number of pans shall be recorded.

1.8. Product Pan Heating. Measured product pans shall be maintained at an average temperature of 160.0 °F ±1.8 °F and individual pan temperatures shall be maintained at 160 °F ±10 °F for a minimum of 8 hours prior to being loaded into the blast chiller or blast freezer. Non-measured product pans shall also be heated for a minimum of 8 hours prior to being loaded into the blast chiller or blast freezer and the non-measured product pans shall be placed in alternating positions with the measured product pans in the heating device. Data acquisition for the temperature of the measured product pans and time measurements shall begin to be recorded prior to the minimum of 8 hours heating period.

1.9. Product Pan Distribution. The product pans shall be spaced evenly throughout each vertical column of rack positions in the blast chiller or blast freezer without the product pans touching any other product pans and without the product pans touching the top and the bottom of the blast chiller or blast freezer cabinet. For blast chillers or blast freezers that have an additional product pan with a product thickness of less than 2 in., the additional product pan shall be placed as close to the middle rack position as possible while maintaining an even distribution of all product pans. If not all rack positions are occupied by product pans, the product pan locations shall be recorded.

1.10. Measured Product Pans. If multiple product pans are required per level of the blast chiller or blast freezer (i.e., product pans can be loaded side-by-side at the same level), only the product temperature of one product pan per level shall be measured and the product pans measured should alternate vertical columns of the blast chiller or blast freezer cabinet so that each vertical column does not have two measured product pans on sequential levels. If a blast chiller or blast freezer requires an additional product pan with a thickness less than 2 in., the additional product pan shall not be measured for product temperature.

1.11. Stabilization. The blast chiller or blast freezer shall stabilize at the test conditions specified in section 1.4 of this appendix for at least 24 hours without operating.

1.12. Pre-cool Cycle. Data acquisition for the test condition temperatures specified in section 1.4 of this appendix and time measurements shall begin to be recorded prior to the pre-cool cycle. The pre-cool cycle shall be initiated on a blast chiller or blast freezer once the stabilization specified in section 1.11 of this appendix is complete. The fastest pre-cool cycle shall be selected. The pre-cool cycle shall be complete when the blast chiller or blast freezer notifies the user that the pre-cool is complete. If the blast chiller or blast freezer does not notify the user that the pre-cool cycle is complete, the pre-cool cycle shall be deemed complete when the blast chiller or blast freezer reaches 40 °F or 2 °F based on the blast chiller's or blast freezer's sensing probe for blast chillers and blast freezers, respectively. For blast chillers or blast freezers without any defined pre-cool cycles, the fastest blast chilling or blast freezing cycle shall be run with an empty cabinet until the blast chiller or blast freezer reaches 40 °F or 2 °F based on the blast chiller's or blast freezer's sensing probe. During the pre-cool cycle, the blast chiller's or blast freezer's sensing probe shall remain in its default or holstered position. The pre-cool test data to be recorded are the test condition temperatures specified in section 1.4 of this appendix, pre-cool cycle selected, pre-cool duration, and final pre-cool cabinet temperature based on the blast chiller's or blast freezer's sensing probe.

1.13. Loading. The blast chiller or blast freezer door shall be fully open to an angle of not less than 75 °F for loading at 4.0 ±1.0 minutes after the blast chiller or blast freezer completes the pre-cool cycle as specified in section 1.12 of this appendix. The door shall remain open to load all of the product pans for the entirety of the loading procedure. The door shall remain open for 20 seconds per roll-in rack and 15 seconds per product pan for roll-in and standard blast chillers or blast freezers, respectively. The total door open period shall have a tolerance of ±5 seconds. The blast chiller's or blast freezer's sensing probe shall be inserted into the geometric center of a product pan approximately 1 in. deep in the product mixture at the median pan level in the blast chiller or blast freezer. If the product pan at the median level is the additional product pan with less than 2 in. of product thickness, the closest product pan or product pan level that is farthest away from the evaporator fan shall be used to insert the blast chiller's or blast freezer's sensing probe. If the median pan level has capacity for multiple product pans, the probed product pan shall be the furthest away from the evaporator. The sensing probe shall not touch the bottom of the product pan or be exposed to the air. The location of the product pan with the sensing probe shall be recorded. The sensing probe shall be placed so that there is no interference with the product pan thermocouple. The product pan thermocouple wiring shall not affect the energy performance of the blast chiller or blast freezer. The door shall remain closed for the remainder of the test.

1.14. Blast Chilling or Blast Freezing Cycle. Determine the blast chilling or blast freezing cycle that will conduct the most rapid product temperature pulldown that is designed for the densest food product, as stated in the blast chiller's or blast freezer's manufacturer literature. A blast chilling cycle shall have a target temperature of 38.0 °F and a blast freezing cycle shall have a target temperature of 0.0 °F. The test condition temperatures specified in section 1.4 of this appendix and the time measurements shall continue to be recorded from the pre-cool cycle. Measured product pan temperatures shall continue to be recorded from the minimum of 8-hour period of heating prior to the loading of the product pans into the blast chiller or blast freezer. Electrical supply frequency, electrical supply potential, and energy consumed shall start to be recorded as soon as the blast chiller or blast freezer door is opened to load the product pans. Once the blast chiller or blast freezer door is closed, the blast chilling cycle or blast freezing cycle shall be selected and initiated as soon as is practicable. The blast chilling cycle or blast freezing cycle selected shall be recorded. The blast chilling or blast freezing test period shall continue from the door opening until all individual measured pan temperatures are at or below 40.0 °F or 2.0 °F for blast chiller and blast freezer tests, respectively, regardless of whether the selected cycle program has terminated. If all individual measured pan temperatures do not reach 40.0 °F or 2.0 °F for blast chiller and blast freezer tests, respectively, two hours after the selected cycle program has terminated, the test shall be repeated with the target temperature lowered by 1.0 °F until all individual measured pan temperatures are at or below 40.0 °F or 2.0 °F for blast chiller and blast freezer tests, respectively, at the conclusion of the test. The duration of the blast chiller or blast freezer test shall be recorded.

1.15. Calculations. The measured energy consumption determined in section 1.14 of this appendix shall be reported in kilowatt-hours and shall be divided by the cumulative total weight of product determined in section 1.7 of this appendix in pounds.

2. Capacity Metric

2.1. Product Capacity. Determine the product capacity by reviewing all manufacturer literature that is included with the blast chiller or blast freezer. The largest product capacity by weight that is stated in the manufacturer literature shall be the product capacity. If the blast chiller or blast freezer is able to operate as both a blast chiller and a blast freezer when set to different operating modes by the user and the manufacturer literature specifies different product capacities for blast chilling and blast freezing, the largest capacity by weight stated for the respective operating mode shall be the product capacity. If no product capacity is stated in the manufacturer literature, the product capacity shall be the product capacity that fills the maximum number of 12 in. by 20 in. by 2.5 in. pans that can be loaded into the blast chiller or blast freezer according to section 1.7 of this appendix. If the blast chiller or blast freezer with no product capacity stated in the manufacturer literature is not capable of meeting the definition of a blast chiller or blast freezer according to § 431.62 upon testing according to section 1 of this appendix, one 12 in. by 20 in. by 2.5 in. pan shall be removed from the blast chiller or blast freezer until the definition of a blast chiller or blast freezer is met according to § 431.62 when testing according to section 1 of this appendix.

[88 span 66229, Sept. 26, 2023]